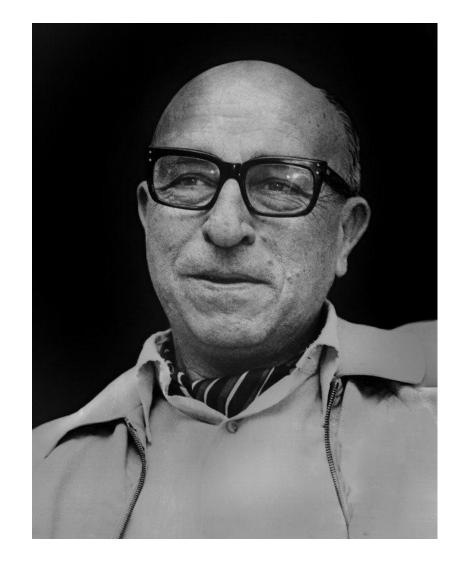
Conservación, mantenimiento y acondicionamiento para la puesta en marcha de PIAP

Conservation, maintenance, and conditioning for the start-up of PIAP

Bonelli Toro, Augusto G. Carricondo, Juan I. **Iofrida, Martín J.** Comisión Nacional de Energía Atómica

AATN 2022

Soberanía energética, autonomía tecnológica e industria nacional


Energy sovereignty, technological autonomy, and national industry

Since 1950 the National Atomic Energy Commission (CNEA) is the main public organization devoted to Research, Development, Production and Applications in the peaceful uses of nuclear energy.

Jorge Sabato

Estudio de Campo CNEA Field Study

> Febrero 2023 February 2023

Ing. José Luis APREA

Visita Técnica CNEA - NASA Technical Visit

Marzo 2023 - March 2023

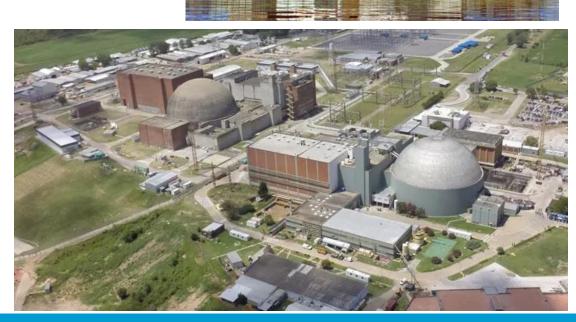
- Química y procesos
- Equipos Rotantes y Vibraciones
- Sistema Eléctrico
- Instrumentación y Control
- Corrosión
- Hidrógeno en materiales

Recommissioning project

On May 12, 2023, a two-year **recommissioning project**

began.

25 month recommissioning contract


ld	Nombre de tarea	Duración	M-1	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28
1	CONTRATO - LIBERACIÓN PRESUPUESTO ANEXO II	0 días	•	•																											
2	EJECUCIÓN PROGRAMA PIAP	552 dias		-										1															-		
3	A01. SISTEMA ELECTRICO	484 dias																													
35	A02. SISTEMA DE CONTROL DE PLANTA	542 dias																											l		
95	A03. EQUIPOS ESTATICOS	500 dias																													
240	A04. INSTRUMENTACIÓN	380 dias																													
256	A05. EQUIPOS ROTANTES	552 dias																													
473	A06. SISTEMA GENERACIÓN VAPOR	197 dias																													
487	A07. SISTEMA DE EFLUENTES	253 dias																													
491	A08. SEGURIDAD DE INSTALACIONES	280 dias																													
504	A09. INFRAESTRUCTURA CIVIL	313 dias																													
513	A10. EQUIPAMIENTO LABORATORIO FISICOQUIMICO	318 dias				1	1																								
562	RECURSOS HUMANOS	497 dias																													

Heavy water and natural uranium

In the early 1960's, Argentina chose to construct **PHWR** considering **technological autonomy**.

- Uranium from argentinean mines
- U3O8 pellets and nuclear fuel bundle fabricated locally
- HW was production required to complete nuclear fuel cycle

HW in Argentina

First approaches (1950-1955):

- Stable Isotopes Laboratory designs a distillation column to obtain HW from natural water.
- Study of the isotopic exchange of deuterium between hydrogen and water vapor.
- The catalytic activity of platinum and aluminum.

30 years later...

3 Heavy Water Projects

2 technologies for HW production:

- Sulfide (PEAP and M80)
- NH3- H2

In 1979 CNEA decided to buy an industrial plant from Sulzer Brothers

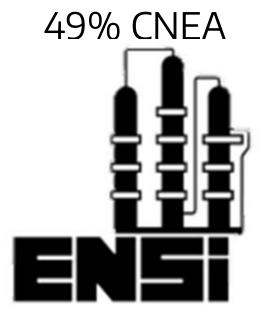
- 200 tn/year to accomplish production for at least 6 NPPs according to 1979 Nuclear Plan.
- Production by the NH3-H2
 exchange process.

Heavy Water Industrial Plant (PIAP)

Contract signed between Sulzer Brothers Limited and CNEA in march 1980

- The plant opened in march 1993
- The design was made with Sulzer and CNEA's engineers support

CNEA - Associated Companies


Ownership and Operation

CNEA: PIAP's owner National Atomic Energy Commission

ENSI (national utility)

51% Neuquén Province

PIAP is located at Neuquén province

PIAP Production capacity

- 2 lines of 100 tn/y (max.)
 reactor grade HW (>
 99.88 % molar).
- With 3 national NPPs PIAP operated mostly with 1 line at a time
- In 1998 PIAP produced
 200tn, according to design capacity, with 400 workers.

HW production for local supply and export

Local production:

- 9-09-1994 first day of HW production
- Production to return Canada's HW from Embalse NPP: 600 tn
- 2nd production for Atucha II NPP: 689 tn
- HW replenishment for argentinean NPPs

>1400 tn total

Exports:

- USA research
- South Korea replenishment of NPPs
- France, Germa

Fitness for service (2017)

The plant performed a Fitness for Service in 2017, after producing **600 tn of HW** for Atucha II NPP.

Production interruption

Production was interrupted in 2017 and **PIAP was kept under maintenance conditions**.

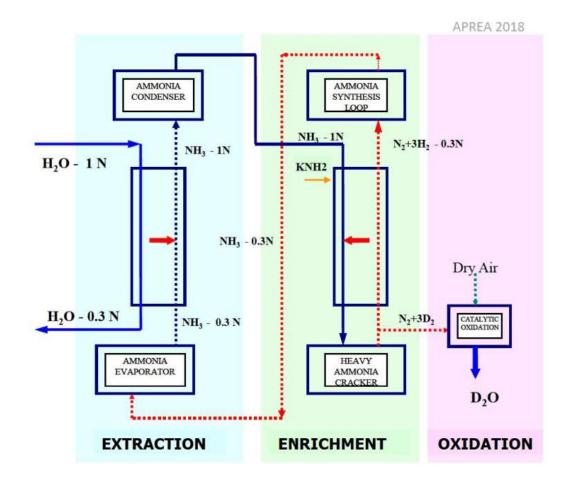
Expected production

One line for **80 tn/y** average production

The commissioning of the plant is expected to start in **2025**

Duration: 4 - 6 months to provide reactor grade HW

2 production lines


The most important components and systems shared with the 2 lines are contemplated to be conditioned in this project.

There's an **opportunity** to recommission the 2nd line, bringing PIAP into a 200 tn/y production plan.

Simplified process diagram

Heavy water by **monothermic isotopic exchange process between ammonia and hydrogen** (NH₃/H₂) for the 3 argentinian NPPs

Muchas gracias! Thank you!

